Donnerstag, Juli 26, 2007
u might think tat im crazy to post something like this..haha...but it seems interesting to me...
A black hole is an object with a gravitational field so powerful that a region of space becomes cut off from the rest of the universe – no matter or radiation, including visible light that has entered the region can ever escape. The lack of escaping electromagnetic radiation renders the inside of black holes (beyond the event horizon) invisible, hence the name. However, black holes can be detectable if they interact with matter, e.g. by sucking in gas from an orbiting star. The gas spirals inward, heating up to very high temperatures and emitting large amounts of light, X-rays and Gamma rays in the process while still outside of the event horizon.[2][3][4] Black holes are also thought to emit a weak form of thermal energy called Hawking radiation.[5][6][7]
While the idea of an object with gravity strong enough to prevent light from escaping was proposed in the 18th century, black holes as presently understood are described by Einstein's theory of general relativity, developed in 1916. This theory predicts that when a large enough amount of mass is present within a sufficiently small region of space, all paths through space are warped inwards towards the center of the volume. When an object is compressed enough for this to occur, collapse is unavoidable (it would take infinite strength to resist collapsing into a black hole). When an object passes within the event horizon at the boundary of the black hole, it is lost forever (it would take an infinite amount of effort for an object to climb out from inside the hole). Although the object would be reduced to a singularity, the information it carries is not lost (see the black hole information paradox).
While general relativity describes a black hole as a region of empty space with a pointlike singularity at the center and an event horizon at the outer edge, the description changes when the effects of quantum mechanics are taken into account. The final, correct description of black holes, requiring a theory of quantum gravity, is unknown.

A supernova (plural: supernovae or supernovas) is a stellar explosion that creates an extremely luminous object that is initially made of plasma—an ionized form of matter. A supernova may briefly out-shine its entire host galaxy before fading from view over several weeks or months. During this brief period of time, the supernova radiates as much energy as the Sun would emit over about 10 billion years.[1] The explosion expels much or all of a star's material[2] at a velocity of up to a tenth the speed of light, driving a shock wave into the surrounding interstellar gas. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant.
There are several types of supernovae and at least two possible routes to their formation. A massive star may cease to generate energy from the nuclear fusion of atoms in its core, and collapse under the force of its own gravity to form a neutron star or black hole. Alternatively, a white dwarf star may accumulate material from a companion star (either through accretion or a collision) until it nears the Chandrasekhar limit of roughly 1.44 times the mass of the Sun, at which point it undergoes runaway nuclear fusion in its interior, completely disrupting the star. This second type of supernova is distinct from a surface thermonuclear explosion on a white dwarf, which is called a nova. Solitary stars with a mass below approximately 8 solar masses, such as the Sun itself, evolve into white dwarfs without ever becoming supernovae.
On average, supernovae occur about once every 50 years in a galaxy the size of the Milky Way[3] and play a significant role in enriching the interstellar medium with heavy elements. Furthermore, the expanding shock waves from supernova explosions can trigger the formation of new stars.[4]
"Nova" is Latin for "new", referring to what appears to be a very bright new star shining in the celestial sphere; the prefix "super" distinguishes supernovae from ordinary novae, which also involve a star increasing in brightness, though to a lesser extent and through a different mechanism.